The reacti	ivity series
Metals react with oxygen to produce metal oxides. The reactions are oxidation reactions because the metals gain oxygen.	When metals react with other substances the metal atoms form positive ions.
ELEMENT ESACTION WITH OXYDEN (AIR) ELEMENT ESACTION WITH WATER ESACTION WITH WATER ESACTION WITH WATER potassium sodium Image Sinter Calcium magnosium Image Sinter Water Biolege Sinter With Harts to Sinter Orgen Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Sinter Image Sinter Water Sinter	Metals can be arranged in order of their reactivity in a reactivity series. The metals potassium, sodium, lithium, calcium, magnesium, zinc, iron and copper can be put in order of their reactivity from their reactions with water and dilute acids. Metals at the <u>top are most reactive</u> . The reactivity of a metal is related to its tendency to form positive ions. Sodium magnesium aluminium Al carbon zinc zinc tin lead Pb hydrogen H copper Cu silver Ag gold Au platinum least reactive Pt
A more reactive metal can displace a less reactive metal from a compound.	Reduction is the loss of oxygen from a compound. Oxidation is the gain of oxygen.
Extraction of met	als and reduction
If the metal is <u>less reactive than carbon</u> , it can be cheaply extracted from the metal oxide by using the reduction with carbon . – forms CO ₂ (greenhouse gas).	Unreactive metals are found on their own (e.g. gold). Most metals are found in compounds and must be separated from other elements first (e.g. O ₂)
Acid + Metal → Salt + Hydrogen For example: Hydrochloric acid + Magnesium → Magnesium Chloride + Hydrogen Acids are substances which produce H ⁺ ions when we add them to water. An alkali is a soluble hydroxide. Alkalis produce OH ⁻ ions when we add them to water.	HT ONLY: Acid + Metal \rightarrow Salt + Hydrogen Oxidation is the loss of electrons and happens to the non metal ion: $2CI^- \rightarrow Cl2 + 2e^-$ Reduction is the gain of electrons and happens to the metal ion $Mg^{2+} + 2e^- \rightarrow Mg$ Bases are substances that will neutralise acids. Metal oxides and hydroxides are bases We can use the pH scale to show how acidic or alkaline a solution is.

In neutralisation reactions, hydrogen ions react with hydroxide	Soluble salts can be made from the reaction between an acid
ions to produce water.	and a base.
$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$	Acid + Base \rightarrow Salt + Water
	To make salts from acid and alkali:
	mix acid and alkali solutions;
	use indicator to show when have completely reacted
	to produce a salt solution;
	crystallise solution to produce solid salt.
Soluble salts can also be made by reacting acids with	The salt made depends on the metal and the acid:
insoluble substances like	Hydrochloric acid (HCl) produces chlorides.
a) metals: Acid + Metal → Salt + Hydrogen	Nitric acid (HNO ₃) produces nitrates.
b) metal oxide: Acid + Metal oxide \rightarrow Salt + water	Sulfuric (H ₂ SO ₄) acid produces sulfates.
c) hydroxides: Acid + Hydroxide → Salt + water	
d) metal carbonates:	
Acid + Metal Carbonate → Salt + Water + Carbon Dioxide	
To make salts from an insoluble base:	
add base to the acid until no more will react;	
filter to remove the excess solid; crystallise the salt solution to produce solid salt.	
The pH scale, from 0 to 14, is a measure of the acidity or	HT ONLY
alkalinity of a solution, and can be measured using	A strong acid is completely ionised in aqueous solution.
universal indicator or a pH probe.	Examples of strong acids are hydrochloric, nitric and
	sulfuric acids.
pH 0-6 are acids (Red with UV indicator)	A weak acid is only partially ionised in aqueous solution.
pH is neutral (Green with UV indicator)	Examples of weak acids are ethanoic, citric and carbonic
pH 8-14 are alkalis (Blue with UV indicator)	acids.
	For a given concentration of aqueous solutions, the
	stronger an acid, the lower the pH.
	As the pH decreases by one unit, the hydrogen ion
	concentration of the solution increases by a factor of 10.
Electr	rolysis
Electrolysis breaks down a substance using electricity. The	Ionic compounds can only be electrolysed when they are <u>molten</u>
substance being electrolysed is called the electrolyte.	or in <u>solution</u> because their ions are free to move to the
	electrodes.
Positive ions move to the negative electrode (the cathode) and	HT ONLY:
negative ions move to the positive electrode (the anode).	Reactions at electrodes can be represented by half equations, for example, $2C_{1} \rightarrow C_{1} + 2c_{2}$
Ions are discharged at the electrodes producing elements.	for example: $2CI^- \rightarrow CI_2 + 2e^-$ Na ⁺ + e ⁻ \rightarrow Na
Normally the metal ion is made at the cathode and non-metal	Electrolysis is used to extract metals if they are too
ion produced at the anode.	reactive to be extracted by reduction with carbon or if the
	metal reacts with carbon.
BUT	
Hydrogen is produced at the cathode if the metal is more	Large amounts of energy are used in the extraction
reactive than hydrogen.	process to melt the compounds and to produce the
Oxygen is produced at the anode unless the solution contains	electrical current.
halide ions when the halogen is produced.	
This happens because in the aqueous solution water	
molecules break down producing hydrogen ions and	
hydroxide ions that are discharged.	

HT ONLY	Molten aluminium oxide is electrolysed in to make aluminium
Reactions at electrodes can be represented by half equations, for example:	metal. First the aluminium oxide is mixed with cryolite to lower its melting point. A carbon anode is used.
$2H+ + 2e- \rightarrow H_2$ $4OH- \rightarrow O_2 + 2H_2 O + 4e$ $4OH- 4e- \rightarrow O_2 + 2H_2 O$	The positive carbon electrode is replaced regularly as it reacts with the oxygen to form carbon dioxide.
	Aluminium forms at negative electrode. Al ³⁺ + $3e^- \rightarrow Al$
	Oxygen forms at positive electrode. $2O^{2-} \rightarrow O_2 + 4e^-$
At the electrodes, negative ions lose electrons (they are	When we electrolyse brine (salty water) we produce three
oxidised) and positive ions gain electrons (they are reduced)	products- chlorine gas, hydrogen gas and sodium hydroxide solution (an alkali)