Cells – Tissues – Organs and the digestive system	
A tissue is a group of cells with a similar structure and function	An organ system is a group of organs working together. E.g.
working together e.g.	The digestive system is made up of a number of organs: Mouth
Epithelial, glandular and muscular in the stomach	gullet. stomach. liver. pancreas. small and large intestines.
	rectum and anus.
mesophyll and epidermal in plant leaves.	
	In plants, the organs are the stem, leaves, roots.
An organ is a group of tissues working together e.g a leaf in a	The digestive system is made up of a number of organs; Mouth,
plant or the stomach in an animal.	gullet, stomach, liver, pancreas, small and large intestines,
	rectum and anus. They have specific roles e.g. the stomach
	digests food, it is made up of muscular, glandular (secretes
Enzy	mes
Enzymes are biological catalysts . They are proteins (hence	Enzymes are specific to their substrates. They have a <u>specific</u>
made by ribosomes) with an active site (substrate fits into this)	shaped active site, which only fits to 1 substrate.
that speed up chemical reactions involved in building, breaking	
the reaction.	
Enzyme	
Substrate	
Active Site	
Lock & Key model- can explain enzyme action	- Amylase – breaks down carbohydrates (e.g. starch)->
-Active site does not change (shane) - fixed	glucose),
-is complementary to substrate (before binding);	- Protease proteins ->Amino acids
	-Lipase fats-> fatty acids + givcerol. (In experiments,
	down, this is because fatty acids are acidic)
	These products are used to build new carbohydrates, lipids and
	proteins. Glucose is also used in respiration
Where they are made → Amylase, protease and lipase are all	Where they act $\rightarrow \underline{all}$ act in <u>small intestine</u> . Amylase also acts in
made in the small intestine and pancreas. Amylase is also made	mouth. Protease also acts in stomach.
in the salivary glands and protease is also made in the stomach .	
Increasing temperature increases rate of reaction to a point	<u>Required practical</u> \rightarrow Each enzyme has optimum pH. Change in
(gives particles <u>kinetic</u> energy-enzyme and substrate more likely	ph can <u>denature</u> enzyme
If temperature is too high (or pH too high or low)- enzyme is	If we increase the substrate concentration -
denatured . The active site changes shape so the <u>substrate can't</u>	Increases rate of reaction to a point- until all active sites are full
<u>fit</u> anymore.	
Enzymes are denatured (change shape) by temperatures and pH	Protease works best in the acidic conditions in the stomach. Bile
that are outside of the optimum conditions – these are specific	made in the liver and stored in the gall bladder breaks lipids
for each enzyme. Increase of temperature initially speeds up	into smaller droplets (emulsifies) so there is a larger surface
reactions as the substrates and active sites are more likely to	area for lipase to work on.
collide, since particles have more kinetic energy.	
Required Enzyme practicals	Enzyme practicals
Independent variable – thing you purposefully change in an	Optimum means best . I.e. the optimum temperature is the

AQA Trilogy-Biology key terms - Organisation

experiment.	temperature enzymes work best at.
Dependent variable- thing you measure.	In industry, a lower temperature than the optimum might be
Control variable- thing you keep the <u>same</u> to make it a fair test	chosen if there isn't much different in results, as it will be
	<u>Cheaper</u> to use a lower temperature, as less energy is needed
Enzyme practicals	Enzyme practicals
A water bath can be used to <u>control the temperature</u> . If a <u>water</u> <u>bath</u> is used, the 2 substances should be put in the water bath for about 5 minutes before they are mixed. This makes sure	Can be surer of the optimum temp/pH if we <u>repeat</u> results. This makes them more repeatable .
they are at the right temperature when they react.	-We should also test smaller intervals (e.g. test 35°C, as well as just 30 and 40°C) (If a graph is drawn and the points are joined dot to dot, this is because the smaller intervals haven't been tested)- this makes it <u>more precise</u>
	Accuracy = how close values are to the true value (i.e. the result they should be)
<u>Rates of reaction – enzymes (i.e. how quickly they happen)</u>	Food tests- required practical
Change in Y axis ÷ change in X axis. (Just like you do in the	Test for starch
chemistry rates of reaction unit). Units = units on Y axis/units	-Add iodine solution
	-Turns blue/black
Transpor	t systems
Substances may move into and out of cells across the cell	Rate of diffusion can be increased by:
membranes via <u>diffusion</u> . <u>Diffusion</u> is the spreading out of the particles resulting in a net	- <u>increased</u> temperature (particles have more kinetic energy, so
movement from an area of <u>higher concentration</u> to an area of	move more)
<u>lower concentration</u> . It is the process by which gases (O_2/CO_2)	larger surface area to volume ratio (more space for particles to
are exchanged in cells and waste (urea) removed from cells into	travel to)
are exchanged in cells and waste (urea) removed from cells into the blood plasma.	- a larger difference in concentration (concentration gradient).
are exchanged in cells and waste (urea) removed from cells into the blood plasma.	 - a larger difference in concentration (concentration gradient),
are exchanged in cells and waste (urea) removed from cells into the blood plasma. High Concentration	 a larger difference in concentration (concentration gradient), Smaller organisms have a larger surface area to volume ratio. Big animals have a small one.
 are exchanged in cells and waste (urea) removed from cells into the blood plasma. High Concentration Concentration Calculating surface area to volume ratio- 1. Calculate surface area (length x height x no. of sides) 2. Calculate volume (length x height x width) 3. Divide result for surface area by the volume 	 Fraiger surface area to volume ratio (more space for particles to travel to) a larger difference in concentration (concentration gradient), Smaller organisms have a larger surface area to volume ratio. Big animals have a small one. Consequently single celled organisms (i.e. v small) can rely on diffusion alone to transport materials in and out of the cell
 are exchanged in cells and waste (urea) removed from cells into the blood plasma. High Concentration Concentration Calculating surface area to volume ratio- Conculate surface area (length x height x no. of sides) Calculate volume (length x height x width) Calculate result for surface area by the volume 	 Franger surface area to volume ratio (more space for particles to travel to) a larger difference in concentration (concentration gradient), Smaller organisms have a larger surface area to volume ratio. Big animals have a small one. Consequently single celled organisms (i.e. v small) can rely on diffusion alone to transport materials in and out of the cell Bigger organisms must have a specialised transport system instead (as diffusion would be too slow)
are exchanged in cells and waste (urea) removed from cells into the blood plasma. Image: High Concentration Concentration Concentration Concentration Concentration Calculating surface area to volume ratio- Concentration 1. Calculate surface area (length x height x no. of sides) 2. Calculate volume (length x height x width) 3. Divide result for surface area by the volume Lungs, small intestine, roots and leaves are all adapted to maximise diffusion. Have large surface areas, thin membranes (short diffusion path) and in animals have a good blood supply (to keep concentration gradient)	 Farger surface area to volume ratio (more space for particles to travel to) a larger difference in concentration (concentration gradient), Smaller organisms have a larger surface area to volume ratio. Big animals have a small one. Consequently single celled organisms (i.e. v small) can rely on diffusion alone to transport materials in and out of the cell Bigger organisms must have a specialised transport system instead (as diffusion would be too slow) <u>Water</u> may move across cell membranes via osmosis. Osmosis is the diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane
are exchanged in cells and waste (urea) removed from cells into the blood plasma.	 Farger surface area to volume ratio (more space for particles to travel to) a larger difference in concentration (concentration gradient), Smaller organisms have a larger surface area to volume ratio. Big animals have a small one. Consequently single celled organisms (i.e. v small) can rely on diffusion alone to transport materials in and out of the cell Bigger organisms must have a specialised transport system instead (as diffusion would be too slow) <u>Water</u> may move across cell membranes via osmosis. Osmosis is the diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane Concentrated solutions have more sugar/salt (and thus less water). Water will move into these areas. The water moves from where there is lots of it, to less of it.
are exchanged in cells and waste (urea) removed from cells into the blood plasma.	 Smaller organisms have a larger surface area to volume ratio. Big animals have a small one. -Consequently single celled organisms (i.e. v small) can rely on diffusion alone to transport materials in and out of the cell -Bigger organisms must have a specialised transport system instead (as diffusion would be too slow) <u>Water</u> may move across cell membranes via osmosis. <u>Osmosis</u> is the diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane Concentrated solutions have more sugar/salt (and thus less water). Water will move into these areas. The water moves from where there is lots of it, to less of it. You may see a graph like this (based on the results of the required practical)

Measure their length and mass 2. 30.0 Place each one in a different test tube. Each test tube 3. should have a different concentration of salt/sugar in it 20.0 (%) 4. Leave overnight (or at least half an hour) 10.0 in mass Remove potato chips and measure and re-weigh 5. 0.2 0.8 1.0 1.2 0.6 Change i Work out percentage change in mass/length (change in - 10.0 mass/starting mass) - 20.0 - 30.0 - 40.0 Concentration of sucrose in mol/dm³ Where the line of best fit crosses the X axis is what the water potential of the potato cell is- no net movement of water by osmosis. Positive numbers show mass has increased (there is less sugar in solution, as there will be more water in the solution than the potato, so it will move into the potato BY OSMOSIS!.). Negative numbers show mass has decreased (when the sugar solution is high, there is less water in the solution (more in the potato), so it moves out of the potato BY OSMOSIS). You must say by osmosis each time you mention water movement. Other potential required practical questions: (higher tier) Active transport moves substances from a more dilute solution to a more concentrated solution -against a concentration -if you are asked to find the change in mass from a gradient (i.e. low to high concentration). This requires energy concentration of sugar/salt you haven't got results from, draw a from respiration line of best fit on a graph and read off it -Rate means how quickly something happens (i.e. over time) -Doesn't really matter if all the potato chips are exactly the same length if you have calculated % change, as %s allow you to compare when you have different starting values. -Ideally you should **blot** the potato chips with paper towel before weighing them, to make sure the mass is only taking into LOW account the water in the potato (and not the water that hasn't Cells that carry out active transport often have lots of actually moved into the potato) mitochondria (to release energy for the process) -Ideally you should use **bungs** on the tubes so water doesn't' evaporate. (both not using bungs or not blotting could be Used to absorb mineral ions into plant root hairs and sugar to be sources of error in an experiment) absorbed in the gut into the blood (so it can be used for respiration) Osmosis & diffusion don't need energy (passive process)- active transport does (active process) -Osmosis and diffusion go down a concentration gradient. Active transport goes against it -Osmosis is the movement of water. Active transport and diffusion can be any other particles (e.g. ions) -osmosis and active transport, substances move from a dilute to a more concentrated solution You must give like for like points (i.e. compare on the same feature)

AQA Trilogy-Biology key terms - Organisation

The respiratory system	
	Lung structure
Equipment like the one below can be used to measure lung volume	Bronchioles Bronchioles Ribs Bronchioles Alveoli Cas exchange happens in the <u>alveoli</u> . There are many alveoli (large surface area). They are surrounded by lots of blood capillaries to maintain concentration gradient of gases. Thin walls, so gases don't have far to travel. Ventilated to maintain concentration gradient.
bronchioles get narrower, so less air can pass through.	
The heart and blood	
Heart has 4 chambers – 2 atria (top) & 2 ventricles (bottom). Valves stop blood going backwards in heart.	Double pump system i.e blood from right hand side of heart goes to lungs. Then returns to heart after lungs and the <u>left side</u> pumps it to the body. This helps to maintain pressure. Remember pictures are backwards Heart structure Vena Cava Right Atrium Right Atrium Right Ventricle Blood
-Aorta (an artery) –Blood to body (oxy) -Pulmonary artery – blood to lungs (de-oxy) -Pulmonary vein – blood from lungs (oxy) -Vena cava – blood from body (de-oxy) Think <u>A</u> for away (arteries) & pulmonary to do with <u>lungs</u> <u>Coronary arteries</u> – arteries around the outside of heart – heart	 Resting heart rate is controlled by cells in the <u>right atria</u> that act as a <u>pacemaker</u>. If someone has an irregular heart rate it can be helped by using an <u>artificial pacemaker</u> (an electronic device), which makes sure the heart beats at regular intervrals. Coronary heart disease -layers of <u>fatty material</u> build up inside the coronary arteries, narrowing them. This <u>reduces the flow of blood</u> through them resulting in a <u>lack of oxygen</u> for the heart muscle. The heart muscle <u>cannot</u> respire and therefore dies.

AQA Trilogy-Biology key terms - Organisation

is muscle needing oxygen etc.	
<u>Risk factors</u> are linked to an increased rate of disease. For heart disease = lack of exercise, smoking, high blood pressure etc. With some risk factors, we know they <u>cause</u> a condition, with others, we just know there is a <u>correlation</u> (i.e. A link)	Heart conditions may cause <u>chest pains</u> , if the heart has to <u>beat</u> <u>faster</u> to allow <u>enough oxygen</u> to be supplied to cells/
Treatment for heart disease:	Treatment for faulty heart valves (leaky or may not open
	nroporty
- <u>Stents</u> - can be used to keep coronary arteries <u>open</u> so blood can reach heart muscle_ (+remain in place for a long time/-risks involved with the surgery e.g. blood clots or infections)	-Can be replaced by biological or mechanical valves
- <u>Statins</u> - drugs to <u>lower cholesterol</u> (+decrease cholesterol, + slows down rate that fatty material is deposited on arteries, - may be other side effects of drug, - people may forget to take them)	
Treatment for heart failure:	You may be asked to evaluate the treatment methods. You need to
-heart transplant from a donor	give good <u>and</u> bad points . If data is provided, don't just repeat it back to the examiner, make a <u>comment on it</u> e.g. <i>cheaper</i> (rather than 620 vs 6200), botter success rates, lass side affects ats
-Artificial hearts can be used until a donor is found	
Blood is carried around the body in 1 of 3 blood vessels:	
-Arteries- carry blood <i>away</i> from heart under high pressure.	
Have thick walls to withstand pressure. Elastic walls so they	
can stretch. <u>Thick muscle</u> to maintain force on the blood.	
- <u>Veins</u> - carry blood back to heart. Have <u>valves</u> to stop blood going backwards	
- <u>Capillaries</u> - tiny vessels branched off from the arteries. Where <i>exchange</i> happens. Very <u>thin walls</u> to help this happen (short diffusion path)	
<u>Blood</u> contains white blood cells, red blood and platelets. These are all found suspended in plasma (liquid part of blood)	Red blood cell - carry oxygen around body. Adapted by having no nucleus (so more space to carry oxygen)
White blood cells – protects body against infection	Platelets- help the blood to <u>clot</u> (stop body losing too much
	blood)

AQA Trilogy-Biology key terms - Organisation

Plant tissues, organs and systems

Plants don't have blood. They move substances via the xylem and phloem in the stem. Xylem-carries water from roots to leaves. Made of dead, hollow cells, which allow a tube to carry the water. Strengthened by lignin. 1 direction. Phloem- carries dissolved sugars and minerals from leaves to rest of plant (for use or storage)- this process is called translocation. Sugars can move in both directions. Made of elongated cells. Cell sap can move from 1 phloem to next through tiny pores in end walls.	Root hair cells- help absorb water (by osmosis) and minerals from the soil (by active transport). Have an elongated shape which allows a large surface area.Lots of mitochondria – where respiration happens, so more energy released for active transport of minerals
Upper Epidermis Wax Cuticle Palisade Mesophyll Mesophyll Lower Epidermis Stoma Guard Cell with Chloroplasts The leaf is a plant organ (as are stem and roots)	 In leaves- Palisade layer- cells on upper surface of leaf with lots of <u>chloroplasts</u> for photosynthesis. Block shaped so can tightly fit onto top layer of leaf (more sunlight) Spongy mesophyll layer- lots of air spaces to allow for gas exchange. Few chloroplasts as not needed. Stomata- openings on bottom of plant (so less evaporation from sun)- let CO₂ into plant (and water out). Opening of these is controlled by guard cells. Upper epidermis- very thin to let light through. Covered by a waxy cuticle to stop water loss. Meristem tissue- in the tips of roots and shoots. Contains undifferentiated cells in zones where plant growth can take place.
<u>Transpiration</u> - <u>Water</u> enters the plant in the root hair cells, moves up through the xylem and evaporates out of the leaves through the <u>stomata</u> (tiny holes in leaf). Pulled by the <u>transpiration stream</u> .	 -Guard cells can control water loss by helping to close stomata (so no water can leave), but they must also stay open sometimes to let CO₂ enter the plant for photosynthesis. Plants usually have more stomata on the bottom of the leaf. This is so that they are out of direct sunlight, therefore it is conclusioned more human and more stomata on the superscript of under the superscript of the superscript.
	cooler and more numia, so <u>less evaporation</u> of water happens.
 Increased light (i.e. daytime) – The stomata open to allow CO₂ in for photosynthesis. Increased temperature – The kinetic energy of the water molecules increases. Molecules move faster and evaporate quicker. Increased air movement – Removing the moist air surrounding the leaf meaning there is a bigger concentration gradient. Decreased air humidity – If there is less water in the air, there is a bigger concentration gradient. Increased air (so diffusion happens faster) If transpiration happens quicker, the plant will take up more water from its roots to try and replace the water lost. 	Potometers can be used to measure water uptake (not truly transpiration rate – water is lost in respiration, used in photosynthesis, leaks in apparatus etc). Measures distance moved by an <u>air bubble.</u> Setting up a potometer → must be airtight, cut shoot at slant underwater, insert apparatus under water, no air bubbles at start, note where bubble is at start.

Higher only- Calculating rate of transpiration with potometer	
Πr ² x distance air bubble moved/time	Counting stomata on a leaf
	-Mount a leaf on a slide and look at them under the microscope. Count the number of stomata. Turn over leaf and look at other side.