AQA Trilogy-Chemistry key terms - Bonding, structure and the properties of matter

General	
Compounds have two or more elements chemically	A metal with a non-metal forms ionic bonds.
combined. Chemical bonding involves either transferring or	A non-metal with a non-metal forms covalent bonds.
sharing electrons in the outer energy levels of atoms to	A metal with a metal forms a metallic bond.
achieve the electronic structure of a hoble gas.	
Ionic Compounds	
Ions form when atoms gain or lose electrons to get the	Atoms that lose electrons become positively charged ions.
electronic structure of a noble gas (Group 0).	Atoms that gain electrons become negatively charged ions.
The elements in Group 1, the alkali metals, all react with	The elements in Group 7, the halogens, all react with the
non-metal elements to form ionic compounds in which the	aikaii metais to form fonic compounds in which the halide
The charge on a simple ion depends on the group number	Flectronic structures
of the element in the periodic table.	$Na^+ = [2,8]^+$
Group 1 ions have a +1 charge. E.g. Na ⁺	
Group 2 ions have a +2 charge. E.g. Mg^{2+}	
Group 7 ions have a -1 charge. E.g. Cl ⁻	
Group 6 ions have a -2 charge. E.g. O ²⁻	sodium ion, chloride ion.
An ionic compound	Ionic compounds are held together by strong electrostatic
is a regular, giant	forces of attraction between oppositely charged ions. These
structure	forces act in <u>all directions</u> in the lattice and this is called <u>ionic</u>
giant ionic lattice	
E.g sodium chloride.	
Ionic compounds have high melting points and high boiling	Solid ionic compounds do not conduct electricity as the ions
points because of the large amounts of energy needed to	cannot move. When <u>melted</u> or <u>dissolved</u> in water, ionic
break the strong ionic bonds. They are solid at room	compounds do conduct electricity because the ions are free
temperature.	to move and carry the current.
Work out formulae for ionic compounds by balancing out	Sometimes we need brackets, if the ions have more than one
the charges.	atom.
E.g. Magnesium chionue is made of Mg and Critons.	E.g. Magnesium hydroxide is made of Mg and OH fors. Formula – $Mg(OH)_{a}$
Covalent Structures and Molecules	
Covalent bonds form when atoms share pairs of electrons.	Some covalently bonded substances consist
These bonds between atoms are very	of simple molecules such as H ₂ , Cl ₂ , O ₂ , HCl, H ₂ O, NH ₃
strong.	and CH _{4.}
Show covalent bonds in molecules in these forms:	O ₂ has a double bond
(н 🖧 с н) Н : Ć : Н н— с — н	
Substances made of simple molecules have low melting	Forces between molecules are weak. It is these weak
points and boiling points. They are gases, liquids or solids	intermolecular forces that are broken when the substance
that are easy to melt.	melts or boils, not the strong covalent bonds.
Substances that consist of simple molecules do not	
conduct electricity because the molecules do not	
Giant covalent structures are formed when huge numbers	Diamond and silicon dioxide are giant covalent structures. All
of atoms are held together by a network of covalent honds	the atoms are linked by strong covalent bond so they have
	very high melting points.
	•

AQA Trilogy-Chemistry key terms - Bonding, structure and the properties of matter

In diamond, each carbon atom forms four covalent	Most giant covalent structures do not conduct electricity as
bonds with other carbon atoms in a giant covalent	they do not have any charged particles that can move.
structure, so diamond is very hard.	
<u>Graphite</u> is another giant covalent structure of carbon but	In graphite, each carbon atom bonds to three others,
It is very <u>unusual</u> in that it <u>conducts electricity</u> and is quite	forming layers. The layers can slide over each
SOTT.	other because there are no covalent bonds between
Diamond Cilicon diavida Cranhita	the layers, so graphite is soft and suppery.
	intermolecular forces. In graphite, one electron from each
	carbon atom is delocalised. These delocalised electrons allow
	graphite to conduct heat and electricity (in a similar way to in
	metals)
Carbon can also form fullerenes with different	Fullerenes can be used for drug delivery into the body, in
numbers of carbon atoms. These are made of hexagonal	lubricants, as catalysts, and in nanotubes for reinforcing
rings of carbon atoms.	materials, eg in tennis rackets.
Metallic Bonding	
Metals consist of many atoms arranged in a regular, closely	The layers of atoms in metals are able to slide over
packed pattern.	each other and so metals can be bent and shaped.
Alloys are usually made from two or more different	Shape memory alloys can return to their original
metals. The different sized atoms of the metals	shape after being deformed eg Nitinol used in
distort the layers in the structure making it more	dental braces
difficult for them to slide over each other, and so	
make allovs harder than pure metals.	
Metallic bonding is positively charged metal ions held	Metallic Bonding
together by strong electrostatic attractions to the electrons	
from the outer shell of each metal atom.	
	Free electron
	$\left \left(\left(\left(+ \right) \right) \left(\left(+ \right) \right) \left(\left(+ \right) \right) \right \right = \left \left(\left(+ \right) \right) \left(\left(+ \right) \right \right \right $
	$\begin{pmatrix} \Theta_{1} \\ (1 + 1) \end{pmatrix} \begin{pmatrix} f \\ (1 + 1) \end{pmatrix} \longrightarrow \begin{pmatrix} f \\ (1 + 1) \end{pmatrix}$
	Delocalised electrons
Metals conduct heat and electricity because the outer	
electrons in their structures are free to move throughout	
the giant metallic lattice.	
0	

AQA Trilogy-Chemistry key terms - Bonding, structure and the properties of matter

The three states of matter are solid, liquid and gas. Melting and freezing take place at the melting point, boiling and condensing take place at the boiling point.	The amount of energy needed to change state from solid to liquid and from liquid to gas depends on the strength of the forces between the particles of the substance. The nature of the particles involved depends on the type of bonding and the structure of the substance.
The three states of matter can be represented by a simple	The study of the former hot were the worthless the high of the
model. In this model, particles are represented by small	The stronger the forces between the particles the higher the
solid spheres. Particle theory can help to explain melting,	menting point and boining point of the substance.
	(HT only) Limitations of the simple model above include that in them model there are no forces, that all particles are represented as spheres and that the spheres are solid.
Solid Liquid Gas	
In chemical equations, the three states of matter are shown as (s), (I) and (g), with (aq) for aqueous solutions.	
Polymers	
The properties of polymers depend on what monomers they are made from and the conditions under which they are made.	For example, low density (LD) and high density (HD) poly(ethene) are produced using different catalysts and reaction conditions.
Thermosoftening polymers will soften or melt when	Thermosoftening polymers are easy to melt because the
heated. They can be heated and remoulded.	forces between polymer chains (intermolecular forces) are
They are made of a tangle of separate polymer chains.	very weak, so are easily broken.
Thermosetting polymers will not soften when heated so	Thermosetting polymers have many (covalent) crosslink
are more heat resistant. This makes them suitable for	between the polymer chains. This prevents polymer chains
making electric kettles. If they are strongly heated they char.	sliding past each other so they are rigid and heat resistant.