GCSE Physics Key Facts – Forces

Forces and their interactions		
Scalar quantities have magnitude (size) only. Vector quantities	Contact forces happen when objects are touching e.g. friction,	
have magnitude and direction e.g. force. Vector quantities are	air resistance, tension and normal contact force. Non-contact	
represented by an arrow (size of arrow represents magnitude)	forces happen when objects aren't touching e.g. gravitational	
	force, electrostatic force and magnetic force	
When two objects interact with each other, they produce equal	Weight is the force acting on an object due to gravity. The	
and opposite forces on each other.	weight of an object depends on the gravitational field strength	
	at the	
	point where the object is.	
weight equation:	appears to ast	
W - mg	appears to act	
w – ng		
W = weight (Newtons)		
m = mass (kg)		
g = gravitational field strength (N/kg)		
Weight is measured using a newtonmeter	Weight is proportional to mass. This can be written as: W \propto m	
A number of forces acting on an object may be replaced by a	Higher Tier only	
single force called a resultant force. This has the same effect as	A single force can be resolved into 2 forces acting at right	
	angles	
→ 30N		
= 90N to the right		
10N← → 30N		
= 20N to the right		
all the original forces acting together.	onorgy transfor	
Work is done when a force causes an object to move	Work done equation:	
	work done equation.	
	W = Fs	
	W = work done (Joules)	
	F = force (Newtons)	
	s = distance moved along the line of action of the force (m)	
One joule of work is done when a force of one newton causes a	When work is done against friction, the temperature of an	
displacement of one metre.	object will increase.	
1 joule = 1 newton-metre		
Forces and elasticity (Hooke's Law)		
Forces can stretch, bend and compress an object	Elastic deformation: object returns to its original shape when	
	the stretching forces are removed. Inelastic deformation:	
	object doesn't return to its original shape when the stretching	
	forces are removed.	
The extension of an elastic object, e.g. a spring, is directly	Hooke's Law equation:	
proportional to the force applied, provided that the limit of	E - ko	
limit of proportionality	F - Ke	
spring breaks	E = force (N)	
S a	k = spring constant (N/m)	
E Hooke's law region –	e = extension (m)	
to extension		
nronortionality is not exceeded	This equation can also be used for compression (squashing) of	
	an object. e then is compression.	
When a force stretches or compresses a spring, elastic	Energy stored in a spring equation:	
potential energy is stored in the spring. If the spring is not		
inelastically deformed, the work done on the spring and the	E = ½ k e ²	
elastic potential energy stored are equal.		
	E = elastic potential energy (J)	
	k = spring constant (N/m)	
	e = extension (m)	

GCSE Physics Key Facts – Forces

Forces and motion		
Distance is a scalar quantity, it is how far an object moves	Displacement is a vector quantity. It includes distance and direction.	
Speed is a scalar quantity (it doesn't have a direction)	Speed of a person running, walking or cycling depends on things such as age, terrain and fitness	
Typical values for the speed of a moving person are: Walking 1.5m/s, Running 3m/s, Cycling 6m/s	Typical speeds of different transportation systems are car:100km/h, train: 200km/h, plane: 900km/h	
Speed of sound in air is 330m/s	Speed equation:	
	s = vt	
Velocity is speed in a particular direction, it is a vector quantity	s = distance in metres, v = speed in m/s, t = time in s	
	speed has a changing velocity. This is because its direction is changing.	
In distance-time graphs:	In velocity-time graphs:	
A horizontal line means the object is stationary.	A horizontal line means a constant velocity.	
 A straight line that slopes means a constant speed. The gradient represents speed 	 A straight line that slopes means a constant acceleration. The gradient represents the acceleration 	
HIGHER TIER ONLY	Acceleration equation:	
If an object is accelerating, its speed at a particular time can be determined by drawing a tangent on a distance-time graph and	$a = \Lambda u/t$	
working out the gradient.		
	a = acceleration (metres per second squared, m/s ²)	
	Δv = change in velocity (metres per second, m/s)	
	t = time (seconds, s)	
The distance or displacement of an object can be calculated	Sovar equation.	
from the area under a velocity-time graph. This may be calculated by counting squares.	$v^2 - u^2 = 2 a s$	
	v = final velocity (metres per second, m/s)	
	u = initial velocity (metres per second, m/s)	
	a = acceleration (metres per second squared, m/s ²)	
Acceleration of a falling object close to the surface of the Earth	An object falling through a fluid initially accelerates due to the	
is about 9.8m/s ²	force of gravity. Eventually the resultant force will be zero and	
	the object will move at its terminal velocity.	
Newton's First Law: If the resultant force acting on an object is	An object that slows down is decelerating	
zero it will continue to move at the same velocity. If the object		
ns stationary, the object remains stationary. If the object is moving the object continues to move at the same speed and in		
the same direction.		
(HT only) The tendency of objects to continue in their state of	When a vehicle travels at a steady speed, the resistive forces	
rest or of uniform motion is called inertia. Intertial mass is a	balance the driving force.	
measure of how difficult it is to change the velocity of an		
Newton's 2 nd Law equation:	Newton's Second Law: The acceleration of an object is	
	proportional to the resultant force acting on it $(a \propto F)$	
F = ma	and is inversely proportional to the mass of the object.	
F = Force (N)		
m = mass (kg)		
A = acceleration (m/s ²)		
forces they exert on each other are equal and opposite.	imes is the symbol used for an approximate answer	
For a certain braking force the faster the vehicle, the greater	Stopping distance = thinking distance + braking distance	
the stopping distance.	Thinking distance = distance the	
	vehicle travels during the driver's reaction time Braking	
Typical reaction times are $0.2 \text{ s to } 0.9 \text{s}$	The greater the speed of a vehicle the greater the braking force	
Typical reaction times are 0.2 5 to 0.55	needed to stop the vehicle in a certain distance.	

GCSE Physics Key Facts – Forces

Describe a method used to measure reaction time (e.g.	A driver's reaction time can be affected by tiredness, drugs and
catching a falling ruler)	alcohol. Distractions may also affect a driver's ability to react.
When a braking force is applied work done by the	The braking distance of a vehicle can be affected by road and
friction force between the brakes and the wheel reduces the	weather conditions and by the condition of the vehicle (e.g.
kinetic energy of the vehicle and the temperature of the brakes	tyres and brakes)
increases.	
Large decelerations may lead to brakes overheating and/or loss	HIGHER TIER ONLY
of control.	Conservation of momentum: In a closed system, total
	momentum before an event equals total momentum after the
	event.