Rate of reaction and collison theory	
Find rate of a chemical reaction from:	We can follow the rate of reaction by timing many things –
Rate of reaction = amount of reactant used ÷ time	e.g. loss of mass, the volume of gas produced, appearance of a coloured product.
Rate of reaction = amount of product formed ÷ time	
The quantity of reactant or product can be measured by the mass in grams or by a volume in cm3 .	
The units of rate of reaction may be given as g/s or cm3 /s	
Or mol/s for HT ONLY	
The slope of a graph drawn from experiments tells us the rate of reaction at that time. The steeper the slope, the faster the reaction.	To react, particles must <u>collide</u> with enough energy -the minimum amount of energy particles must have to react is called the <u>activation energy</u> .
HT ONLY: To measure the rate of reaction at a specific time calculate the gradient of a tangent to the curve.	
Increasing temperature increases the speed of the particles so that they collide more <u>frequently</u> and more <u>energetically</u> . This increases the rate of reaction.	Increasing the pressure of reacting gases makes particles closer together so increases the frequency of collisions and so increases the rate of reaction.
Increasing the concentration of reactants in solutions makes particles closer so increases the frequency of collisions and so increases the rate of reaction.	Increasing the surface area of solid reactants increases the frequency of collisions and so increases the rate of reaction.
<u>Catalysts</u>	
Catalysts increase the rate of chemical reactions but are not used up during the reaction. Different reactions need different catalysts. They are NOT included in the chemical equation for the reaction. E.g Enzymes	Catalysts are important in increasing the rates of chemical reactions used in industrial processes to reduce <u>costs</u> .
Catalysts increase the rate of reaction by providing a different nathway for the reaction that has a lower	
activation energy	
Energy Reactants Progress of reaction	

Reversible reactions and equilibrium	
In <u>reversible</u> reaction the products of the reaction can react to produce the original reactants. A + B - C + D	For example: Anhydrous Hydrated ndothermic copper xothermic sulphate
One direction is exothermic and the other is endothermic. The <u>same amount</u> of energy is transferred in each case.	Equilibrium is reached when the forward and reverse reactions occur at exactly the same rate.
HT ONLY: The relative amounts of all the reactants and products at equilibrium depend on the conditions of the reaction.	HT ONLY: Le Chatelier's Principle (Concentration). If the concentration of a reactant is increased, more products will be formed until equilibrium is reached again.
If a system is at equilibrium and a change is made to any of the conditions, then the system responds to counteract the change.	If the concentration of a product is decreased, more reactants will react until equilibrium is reached again.
 HT ONLY: Le Chatelier's Principle (Temperature) If the temperature of a system at equilibrium is increased: the relative amount of products at equilibrium increases for an endothermic reaction the relative amount of products at equilibrium 	HT ONLY: Le Chatelier's Principle (Pressure) an increase in pressure causes the equilibrium position to shift towards the side with the smaller number of molecules as shown by the symbol equation for that reaction
decreases for an exothermic reaction.	towards the side with the larger number of molecules as shown by the symbol equation for that reaction.
If the temperature of a system at equilibrium is decreased: • the relative amount of products at equilibrium decreases for an endothermic reaction • the relative amount of products at equilibrium increases for an exothermic reaction	