GCSE Physics Key Facts - Electricity

Current, Potential Diff	erence and Resistance
Draw and interpret circuit diagrams using circuit symbols for: Open switch, closed switch, lamp, fuse, cell, battery,	For electrical charge to flow through a closed circuit the circuit must include a source of potential difference.
diode, voltmeter, ammeter, resistor, thermistor, variable resistor, LDR and LED	
Electric current is a flow of electrical charge. The size of the electric current is the rate of flow of electrical charge.	Ohm's law equation
Q = I x t	V = I x R
Q = Charge flow in Coulombs,	V = Potential difference (volts), I = current (Amperes),
I = current in Amperes, t = time in seconds	R = resistance (ohms)
A current has the same value at any point in a single closed loop. (e.g. current at all points in a series circuit is the same) The resistance of components such as lamps, diodes, thermistors and LDRs is not constant; it changes with the current through the component.	The greater the resistance of a component the smaller the current for a given potential difference (pd) across the component. Current through an ohmic conductor (at a constant temperature) is directly proportional to the potential difference across the resistor. This means that the resistance remains constant as the current changes.
The current through a diode flows in one direction only. The diode has a very high resistance in the reverse direction.	The resistance of a filament lamp increases as the temperature of the filament increases.
The resistance of a thermistor decreases as the temperature increases. Thermistors are used in thermostats. The resistance of an LDR decreases as light intensity increases. Applications of LDRs include switching lights on when it gets dark.	
Series and parallel circuits	
Series circuit have only one route for the current to take, parallel circuits have more than one route for the current to take.	Series Circuits: Same current through every component, potential difference of power supply is shared between the components
Parallel Circuits : Potential difference across each branch of the circuit is the same, current splits at a junction in the circuit	Resistors in series : Total resistance of two components in series is found by adding together the resistance of each component. (adding resistors in series increases resistance)
Resistors in parallel : Total resistance of two resistors is less than the resistance of the smallest resistor (adding resistors in parallel decreases resistance)	
Domestic uses and safety	
UK mains supply has a frequency of 50Hz (it changes direction 50 times per second) and a potential difference of 230V	Batteries produce direct current (dc). This flows in only one direction. Mains electricity produces alternating current (a.c). This keeps changing direction.

GCSE Physics Key Facts - Electricity

Most electrical appliances are connected to the mains	The live wire carries the alternating potential difference
using three-core cable. The colour of the insulation on	from the supply. The neutral wire completes the circuit.
each wire is: live wire (brown), neutral wire (blue),	The earth wire is a safety wire. It stops the appliance
earth wire (green and yellow stripes)	becoming live. It only carries a current if there is a fault
Potential difference between live wire and earth (OV) is	The live wire may be dangerous even when a switch in
230V. The neutral wire is at, or close to, earth potential	the mains circuit is open
(OV).	
Energy Transfers and The National Grid	
Power equatios:	Electrical appliances transfer electrical energy into
	different types (e.g. an electric motor transfers electrical
$\mathbf{P} = \mathbf{I}\mathbf{V}$ and $\mathbf{P} = \mathbf{I}^2\mathbf{R}$	energy into kinetic energy)
P = power (Watts)	
I = current (Amperes)	
V = Potential difference (Volts)	
R = resistance (ohms)	
Work is done when charge flows in a circuit	The amount of energy an appliance transfers depends on
	the power of the appliance and how long it is switched on
	for.
	Energy Equation:
	E = P x t
	E = opermy transferred (loules)
	E = energy transferred (Joules)
	P = Power (Watts)
	t = time (seconds)
Energy equation:	The National Cridic a system of eables and transformers
Energy equation:	The National Grid is a system of cables and transformers
	linking power stations to consumers
E = Q V	
E = energy transferred (Joules)	
Q = charge (Coulombs)	
V = potential difference (Volts)	
Step-up transformers are used to increase the potential	Transmitting electricity at high potential differences
difference from the power station to cables. Step-down	increases efficiency as it reduces current and therefore
transformers are used to decrease the potential	reduces energy lost due to heating.
difference for domestic use.	