GCSE Physics Key Facts - Energy

Energy Changes	8. Energy Storage
Energy can be stored in a number of ways e.g. chemical	& Energy Storage Moving objects have kinetic energy.
potential energy (foods and fuels), gravitational potential	Noving objects have knetic energy.
energy (when objects are lifted against gravity) and elastic	Kinetic Energy equation:
potential energy (in objects that are stretched or compressed)	$E_{\rm k} = \frac{1}{2} m v^2$
,	
	E_k = kinetic energy in Joules, m = mass in kg, v = speed in m/s
Elastic potential energy Equation:	Gravitational potential energy equation:
$E_{\rm e} = \frac{1}{2} k e^2$	g.p.e. = mass × gravitational field strength × height
	Ep = mgh
assuming limit of proportionality hasn't been exceeded	
elastic potential energy, Ee, in joules, J	gravitational potential energy, <i>E</i> p, in joules, J
spring constant, k, in newtons per metre, N/m	mass, <i>m</i> , in kilograms, kg
extension, <i>e</i> , in metres, m	gravitational field strength, g, in newtons per kilogram, N/kg ,height, h, in metres, m
The specific heat capacity of a substance is the amount of	Specific Heat Capacity equation:
energy needed to raise the temperature of 1 kg of the	specific fleat capacity equation.
substance by 1°C	$\Delta E = m c \Delta \vartheta$
	change in thermal energy, ΔE , in joules, J
	mass, <i>m</i> , in kilograms, kg
	specific heat capacity, c, in joules per kilogram per degree
	Celsius J/kg °C
	temperature change, $\Delta \vartheta$, in degrees Celsius, °C
Power is the rate at which energy is transferred or the rate at	Power Equations:
which work is done	
	P = E/t
	D - nower in Watte E - energy in loyles t - time in seconds
Power Equations:	P = power in Watts, E = energy in Joules, t = time in seconds An energy transfer of 1 Joule per second is the same as a
Fower Equations.	power of 1 Watt
P = W/t	
,.	
P = power in Watts, W = work done in Joules, t = time in	
seconds	
	fer in a System
Energy can be transferred usefully, stored or dissipated, but	In all systems, energy is wasted (stored in less useful ways).
cannot be created or destroyed.	Wasted energy can be reduced through lubrication and
	thermal insulation
The higher the thermal conductivity of a material the higher	A building cools down at a faster rate if the walls are thinner or
the rate of energy transfer by conduction across the material.	if the thermal conductivity of the material is higher.
The more officient on energy transfer is the loss worked a	Pocall and use these equations for efficiency
The more efficiency can be given as a number between 0 and 1	Recall and use these equations for efficiency:
there is. Efficiency can be given as a number between 0 and 1 (0% to 100% efficient)	Efficiency = useful output energy/total input energy
	Emelency – userui output energy/totai input energy
	Efficiency = useful power output/total power input
HT only: Energy transfers can be made more efficient e.g. by	
reducing friction on moving parts of machines using oil or	
lubricants.	
National and Globa	al Energy Resources
The main energy resources available for use on Earth include:	A renewable energy resource is one that is being (or can be)
fossil	replenished as it is used
fuels (coal, oil and gas), nuclear fuel, biofuel, wind, hydro-	
electricity,	
geothermal, the tides, the Sun and water waves.	
Geothermal energy comes from the energy released by	Energy resources are used in transport, electricity generation
radioactive substances deep in earth. Heats up surrounding	and heating
rocks (often volcanoes). Power stations pump steam down to	

GCSE Physics Key Facts - Energy

these which drives turbines . A renewable energy resource is one that is being (or can be) replenished as it is used	
Fossil fuels Disadvantages =Non-renewable, producea carbon dioxide (which increases global warming) and sulphur dioxide (makes acid rain).	Nuclear fuel = uranium & plutonium (nuclear fission.) Advantages -No pollutant gases, more energy per kg of source, reliable
	<i>Disadvantages</i> -Non-renewable; makes radioactive waste (may leak into ground) and accidents could release and spread radioactive material.
Biofuels – made from <u>plant</u> material. <i>Advantages</i> – renewable; carbon neutral (CO_2 taken in by plants growing = CO_2 produced when plants burn); no acid rain, <i>Disadvantages</i> – less space to grow crops for food-food shortages, destruction of habitats to grow plants, slower-crops must grow	Solar panels Advantages – renewable, energy is free, useful for remote places or when only small amount needed, no running cost, no fuel is burnt. Disadvantages – expensive to buy, need lots of them and sunshine (i.e. not at night) to make enough power.
Geothermal energy comes from the energy released by radioactive substances deep in earth. Heats up surrounding rocks (often volcanoes). Power stations pump steam down to these which drives turbines .	Water & wind can <u>turn turbines directly</u> (e.g. tidal ,wave, hydroelectric power). <i>Advantages</i> = <u>Renewable</u> <i>Disadvantages</i> = don't produce a <u>constant supply</u> of electricity, often noisy, unsightly, may destroy habitats